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Notes on Inequalities with Doubling Weights*
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Various important weighted polynomial inequalities, such as Bernstein,
Marcinkiewicz, Nikolskii, Schur, Remez, etc., inequalities, have been proved
recently by Giuseppe Mastroianni and Vilmos Totik under minimal assumptions
on the weights. In most of the cases this minimal assumption is the doubling condi-
tion. Sometimes, however, as in the weighted Nikolskii inequality, the slightly
stronger A� condition is used. Throughout their paper the Lp norm is studied
under the assumption 1�p<�. In this note we show that their proofs can be
modified so that many of their inequalities hold even if 0<p<1. The crucial tool
is an estimate for quadrature sums for the pth power (0<p<� is arbitrary) of tri-
gonometric polynomials established by Lubinsky, Ma� te� , and Nevai. For technical
reasons we discuss only the trigonometric cases. � 1999 Academic Press
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1. THE WEIGHTS

For introduction we refer to Sections 1 and 2 of the Mastroianni�Totik
paper [12] and the references therein. See [1�9, 11, 13]. Here we just for-
mulate the original and some equivalent definitions that we shall use. In
Sections 2�7 we shall work with integrable, 2?-periodic weight functions W
satisfying the so-called doubling condition:

W(2I )�LW(I ) (1.1)

for intervals I/R, where L is a constant independent of I, 2I is the
interval with length 2|I | ( |I | denotes the length of the interval I ) and with
midpoint at the midpoint of I, and

W(I ) :=|
I

W(u) du.

Article ID jath.1999.3340, available online at http:��www.idealibrary.com on

60
0021-9045�99 �30.00
Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.

* Research is supported, in part, by NSF under Grant DMS-9623156.



In other words, W has the doubling property if the measure of a twice
enlarged interval is less than a constant times the measure of the original
interval. An integrable, 2? periodic weight function on R satisfying the
doubling condition will be called a doubling weight. We start with the
following elementary observation.

Lemma 1.1. Associated with an integrable, 2?-periodic weight function
W on R,

Wn(x) :=n |
x+1�n

x&1�n
W(u) du.

Then W is a doubling weight if and only if there are constants s>0 and
K>0 depending only on W such that

Wn( y)�K(1+n |x& y| )s Wn(x).

holds for all n # N and x, y # R. Here, if L is the doubling constant, then
s=log2 L and K :=L are suitable choices.

2. THE MAIN THEOREM

The following basic theorem is stated for 1�p<� in [12]. Here we
extend its validity to the case 0<p�1. The proof is a modification of
Mastroianni's and Totik's arguments, but for the sake of completeness we
present the whole proof. Also, note that the case 1�p<� follows
immediately from the case 0<p�1. Let Tn denote the class of all real
trigonometric polynomials of degree at most n.

Theorem 2.1. Let W be a doubling weight, and let Wn be as in Lemma
1.1. Let 0<p<� be arbitrary. Then there is a constant C>0 depending
only on p and on the doubling constant L such that for every Tn # Tn we have

C&1 |
?

&?
|Tn | p W�|

?

&?
|Tn | p Wn�C |

?

&?
|Tn | p W. (2.1)

Seemingly we have not gained too much, but, as the next lemma shows,
Wn is very close to be a nonnegative trigonometric polynomial of degree at
most n.

Theorem 2.2. Suppose W satisfies the doubling condition. Let 0<
p<�. Then there are constants B1>0, B2>0, and B3>0 depending only
on p and on the doubling constant L, and for each n # N there is a non-
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negative trigonometric polynomial Qn of degree at most N :=((log2 L)�p+4)n
so that

B1Wn(x)�Qn(x) p�B2Wn(x) (2.2)

and

|Q$n(x)| p�B3n pWn(x) (2.3)

uniformly in x # R.

Proof of Theorem 2.2. We define 2m as the smallest even number not
less than (log2 L)�p+2. In particular 2m�(log2 L)�p+4. Let

Sn(t)=n&(2m&1) \sin((n+1�2) t)
sin(t�2) +

2m

(2.4)

be the Jackson kernel. Then Sn is a trigonometric polynomial of degree at
most 2mn�((log2 L)�p+4) n. It is well known that

2&2m(cos 1)2m n&l�|
?

&?
|t| l Sn(t) dt�4?2mn&l (2.5)

for each 0�l<2m&2. Indeed, the inequalities

Sn(t)�9mn, |t|�1�n,

Sn(t)�?2mn&(2m&1)t&2m, 1�n�|t|�?,

are easy to establish, from where

|
?

&?
|t| l Sn(t) dt�\ 2?2m

|l&2m+1|
+2 } 9m+ n&l�4?2mn&l

is obvious for each 0�l<2m&2. On the other hand

Sn(t)�(cos 1)2m n, |t|�1�n,

from where

|
?

&?
|t| l Sn(t) dt�2&l (cos 1)2m n&l

for each 0�l<2m&2 follows. By this (2.5) is completely shown. It clearly
implies that with s=log2 L we have

2&2m(cos 1)2m�|
?

&?
(1+n |t| )s�p Sn(t) dt�4(2?)2m. (2.6)
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Now we define

Qn(x) :=|
?

&?
Wn(t)1�p Sn(x&t) dt. (2.7)

Then Qn is a nonnegative trigonometric polynomial of degree 2mn and

Q$n(x)=|
?

&?
Wn(t)1�p S$n(x&t) dt. (2.8)

Applying Lemma 1.1 and (2.6), we obtain

Qn(x)=|
?

&?
Wn(x&t)1�p Sn(t) dt

�|
?

&?
Wn(x)1�p K1�p(1+n |t| )s�p Sn(t) dt

�L1�p4(2?) (log 2 L)�p+4 Wn(x)1�p.

The opposite inequality is simpler. For |t|�1�(2n), we have

Wn(x)�LWn(x&t)

and

Sn(t)�(cos 1)2m n,

therefore

Qn(x)�|
1�(2n)

&1�(2n)
Wn (x&t)1�p Sn(t) dt

�L&1�p(cos 1)2m Wn(x)1�p |
1�(2n)

&1�(2n)
n dt

�L&1�p(cos 1) (log 2 L)�p+4 Wn(x)1�p,

and the proof of (2.2) is complete. To prove (2.3), observe that

|S$n(t)|�2 } 9mmn2, |t|�1�n,

|S$n(t)|�7?2mmn&(2m&2)t&2m, 1�n�|t|�?,

which follows from direct differentiation and from Bernstein's inequality

max
&?�t�?

|S$n(t)|�2mn max
&?�t�?

|Sn(t)|�2 } 9mmn2,
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since (2.4) implies

max
&?�t�?

|Sn(t)|�9mn.

We have

|
?

&?
|t| l S$n(t) dt�\ 2 } 7?2m

|l&2m+1|
+4 } 9mm+ n1&l�18?2mmn1&l.

It clearly implies that with s=log2 L we have

|
?

&?
(1+n |t| )s�p S$n(t) dt�18(2?)2m mn. (2.9)

Now combining (2.8) and (2.9), we obtain

Q$n(x)=|
?

&?
Wn(x&t)1�p S$n(t) dt

�|
?

&?
Wn(x)1�p K1�p(1+n |t| )s�p S$n(t) dt

�L1�p18(2?) (log 2 L)�p+4 \log2 L
p

+4+ nWn(x)1�p.

By this (2.3) is proved. K

Proof of Theorem 2.1. As we have already remarked the case 1�p<�
of the theorem follows immediately from the case 0<p�1. To see this, if
1�p<� then let m be the smallest integer not less than p. The 1�p<�
part of the theorem now follows by applying our theorem with n and p
replaced by nm and p�m�1, respectively.

So from now on let 0<p�1. However, our next observation is valid for
all 0<p<�. Namely we verify that there is a constant B4 depending only
on p and the doubling constant L such that for every Tn # Tn we have

|
?

&?
|T $n | p Wn�B4 n p |

?

&?
|Tn | p Wn . (2.10)

That is, Bernstein's inequality in Lp , 0<p<�, holds for trigonometric
polynomials Tn of degree at most n with the weight Wn . Indeed, by
Theorem 2.2,

B1 |
?

&?
|T $n | p Wn�|

?

&?
|T $n Qn| p�B2 |

?

&?
|T $n | p Wn .
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Here

T $n Qn=(TnQn)$&TnQ$n ,

therefore

|
?

&?
|T $n | p |Qn | p�2 p \|

?

&?
|(TnQn)$| p+|

?

&?
|Tn Q$n | p+

�2 p(n+N) p |
?

&?
|TnQn | p+2 pB3n p |

?

&?
|Tn | p Wn

�B4 n p |
?

&?
|Tn | p Wn

with a constant B4>0 depending only on p and on the doubling constant
L, where at the first inequality we used that (A+B) p�2 p(A p+B p) for
arbitrary A, B, p>0; at the second inequality, to estimate the first term, we
used Bernstein's inequality [1] in Lp for 0<p<� and for trigonometric
polynomials of degree at most n+N (N is defined in Theorem 2.2); while
to estimate the second term, the bound for |Q$n | given by Theorem 2.2 has
been used; in the third inequality Theorem 2.2 has been used again. Thus
the proof of (2.10) is complete.

Now let M be a large positive integer to be chosen later, and set

Ik :=_2k?
Mn

,
2(k+1) ?

Mn & , k=0, 1, ..., Mn&1.

Let `k # Ik be a place where |Tn | attains its maximum on Ik , and let %k # Ik

be a place where Wn attains its maximum on Ik (note that Wn is positive
continuous). Finally we define

Rn :=: |Tn(`k)| p Wn(%k),

where, and in what follows, the summation is taken for k=0, 1, ..., Mn&1.
Let !k # Ik be arbitrary. Using 0<p�1, we have

Rn&: |Tn(!k)| p Wn(%k)=: ( |Tn(`k)| p&|Tn(!k)| p) Wn(%k)

�� ( |Tn(`k)|&|Tn(!k)| ) p Wn(%k)�: |Tn(`k)&Tn(!k)| p Wn(%k)

�: |T $n({k)(`k&!k)| p Wn(%k)�(Mn)&p : |T $n({k)| p Wn(%k)
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with appropriate {k # Ik . Using the fact that for u, v # Ik we have

L&1Wn(u)�Wn(v)�LWn(u)

uniformly, then applying Theorem 2.2, we can continue

�(Mn)&p L : |T $n({k)| p Wn({k)�(Mn)&p LB&1
1 : |T $n({k)| p |Qn({k)| p.

Now using Theorem 2 of Lubinsky, Ma� te� , and Nevai from [10] (see
Lemma 2.3 after the proof), then applying Theorem 2.2 and (2.10), we can
continue

�(Mn)&p LB&1
1

9
2

Mn |
2?

0
|T $n Qn | p

�(Mn)&p LB&1
1

9
2

B2 Mn |
2?

0
|T $n | p Wn

�(Mn)&p LB&1
1

9
2

B2 B4 Mnn p |
2?

0
|T n | p Wn

=LB&1
1

9
2

B2B4M 1& pn |
2?

0
|Tn | p Wn ,

where we assume that M�(log2 L)�p+5, that is Mn�((log2 L)�p+5)n�
N+n, (N is defined in Theorem 2.2), and where B1 and B2 are the same
as in Theorem 2.2, while B4 is defined earlier in this proof.

Now it is clear that

|
2?

0
|Tn | p Wn=: |

Ik

|Tn | p Wn

�: |Ik | |Tn(`k)| p Wn(%k)=
2?
Mn

Rn .

So we have proven

Rn&: |Tn(!k)| p Wn(%k)�LB&1
1

9
2

B2B4

2?
M p Rn

from which it follows that

Rn&: |Tn(!k)| p Wn(%k)� 1
2 Rn

66 TAMA� S ERDE� LYI



provided

M�\4?LB&1
1

9
2

B2B4+
1�p

+
log2 L

p
+5. (2.11)

Using also that

L&1Wn(%k)�Wn('k)�LWn(%k)

uniformly whenever 'k # Ik , we obtain that for any !k , 'k # Ik we have

: |Tn(!k)| p Wn('k)�
1

2L
Rn

provided (2.11). In particular, this is true for the points !k and 'k where
|Tn | and Wn , respectively, attain their minimum on Ik , from which we
obtain that all possible sums

: |Tn(uk)| p Wn(vk), uk , vk # Ik

are uniformly of the same size (they are between (2L)&1 Rn and Rn). If we
also observe that vk # Ik implies

n |
Ik

W�Wn(vk)�L (log2 M)+1 n |
Ik

W,

it follows that

n
2L

: |
Ik

(max
v # Ik

|Tn(v)| p) W(u) du�: |Tn(uk)| p Wn(vk)

�2LL(log2 M)+1n : |
Ik

(min
v # Ik

|Tn(v)| p) W(u) du

whenever uk , vk # Ik . Setting uk=vk=2k?�(Mn)+t and integrating this
with respect to t # [0, 1�(Mn)], it follows that

1
2ML

: |
Ik

(max
v # Ik

|Tn(v)| p) W(u) du�: |
Ik

|Tn(t)| p Wn(t) dt

�2L
L(log2 M)+1

M
: |

Ik

(min
v # Ik

|Tn(v)| p) W(u) du.
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We now conclude that

1
2ML

: |
Ik

|Tn(t)| p W(t) dt�: |
Ik

|Tn(t)| p Wn(t) dt

�2L
L(log2 M)+1

M
: |

Ik

|Tn(t)| p W(t) dt,

which we wanted to prove. K

We remark that the crucial step of the proof of Theorem 2.1 is two
applications of Theorem 2 of Lubinsky, Ma� te� , and Nevai from [10]. This
can be formulated as follows.

Lemma 2.3. Let 0<p<�. Let � be a convex, nonnegative, and non-
decreasing function on [0, �). Let

$ :=min[{2&{1 , {3&{2 , ..., {m&{m&1 , 2?&({m&{1)]>0.

Then

:
m

j=1

�( |Sn({j)|
p)�(2n+$&1)(2?)&1 |

2?

0
�( |Sn(u)| p ( p+1) e�2) du

for every trigonometric polynomial Sn of degree at most n.

To demonstrate the power of Theorem 2.1 (together with Theorem 2.2)
we prove Bernstein's Inequality in Lp , 0<p<�, with doubling weights.
This has been done in the case 1�p<� in the Mastroianni�Totik paper
[12]. We state the extended versions of most of the remaining results of
[12]. The proofs are left to the reader who needs to observe only that in
the appropriate places of the proofs in [12], one needs to apply our
Theorems 2.1 and 2.2 rather than their Theorems 3.1 and 3.2.

3. BERNSTEIN'S INEQUALITY IN Lp , 0<p<�, WITH
DOUBLING WEIGHTS

Bernstein inequality plays a basic role in proving inverse theorems of
approximation. The next result is a Bernstein-type inequality in Lp , 0<
p<�, with respect to doubling weights.
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Theorem 3.1. Let W be a doubling weight, and let 0<p<� arbitrary.
Then where is a constant C>0 depending only on p and on the doubling
constant L so that

|
?

&?
|T $n | p Wn�Cn p |

?

&?
|Tn | p W

holds for every Tn # Tn .

Proof of Theorem 3.1. With the help of Theorem 2.1 and with a piece
of its proof, the proof of the theorem is a triviality now. We have already
proven the theorem with W replaced by Wn , see (2.9). What remains to
observe is that Theorem 2.1 allows us to replace Wn by W. K

4. THE CHRISTOFFEL FUNCTION FOR 0<p<� WITH
DOUBLING WEIGHTS

For 0<p<� and x # R, we define

*n(x)=*n(W, p, x) := inf
|Tn(x)| =1 |

?

&?
|Tn | p W,

where the infimum is taken for all Tn # Tn for which |Tn(x)|=1. Estimates
for the Christoffel functions are useful in comparing different norms of tri-
gonometric polynomials, and (in the algebraic case) their magnitude plays
an important role in the study of orthogonal polynomials (mostly in the
classical p=2 setting). The size of *n(W, p, x), where W is a doubling
weight and 0<p<� is arbitrary is given by the next theorem.

Theorem 4.1. Let W be a doubling weight, and let 0<p<� be
arbitrary. Then there is a constant C>0 depending only on p and on the
doubling constant L so that for all n # N and x # R, we have

C&1

n
Wn(x)�*n(W, p, x)�

C
n

Wn(x).

5. THE MARCINKIEWICZ INEQUALITIES FOR 0<p<�
WITH DOUBLING WEIGHTS

Marcinkiewicz-type inequalities offer a basic tool by which the
(weighted) Lp norm of a trigonometric polynomial can be replaced by a
finite sum. The next theorem offers such inequalities involving doubling
weights.
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Theorem 5.1. Let W be a doubling weight, and let 0<p<� be
arbitrary. Then there are two constants M>0 and C>0 depending only on
p and on the doubling constant L such that

|
?

&?
|Tn | p W�

C
n

:
S

j=0

Tn(!j)| p Wn(!j)

for every Tn # Tn provided the points !0<!1< } } } <!S satisfy !j+1&!j�
1�(Mn) and !S�!0+2?. Furthermore, for every M>0 there is a constant
C>0 depending only on p, M, and on the doubling constant L such that

1
n

:
S

j=0

|Tn(!j)| p Wn(!j)�C |
?

&?
|Tn | p W

for every Tn # Tn provided the points !0<!1< } } } <!S satisfy !j+1&!j�
1�(Mn) and !S�!0+2?.

6. SCHUR INEQUALITY FOR 0<p<� WITH
DOUBLING WEIGHTS

Sometimes we need to get rid of a factor in an algebraic polynomial or
trigonometric polynomial and one needs an estimate to see how the norm
changes under such a transformation. Schur-type inequalities are used in
such a situation. The next theorem offers a Schur-type inequality involving
doubling weights and generalized Jacobi weights.

Theorem 6.1. Let W be a doubling weight, and let 0<p<� be
arbitrary. Let H be a generalized Jacobi weight of the form

H(t)=h(t) `
k

j=1

|t&xj |
#j, x j , t # [&?, ?), #j>0,

where h is a positive measurable function bounded away from 0 and �. Then

|
?

&?
|Tn | p W�Cn1 |

?

&?
|Tn | p WH,

for every Tn # Tn , where 1 :=max[#j : j=1, 2, ..., k] and C is a constant
independent of n.
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7. REMEZ INEQUALITY FOR 0<p<� WITH A� WEIGHTS

The periodic weight W on R is called an A� weight (or is said to satisfy
the A� condition) if for every :>0 there is a ;>0 such that

W(E)�;W(I )

for any interval I/R and any measurable set E/I with |E|�: |I |.
Similarly to doubling weights, many equivalent definitions are known, see
[12], for instance. A� weights are obviously doubling weights; the A�

condition is slightly stronger than the doubling condition. The following
full analogue of the trigonometric Remez inequality [6] (see also [12])
holds with A� weights.

Theorem 7.1. Let W be an A� weight, and let 0<p<� be arbitrary.
Then there is a constant C>0 depending only on p and on the weight W so
that if Tn # Tn and E is a measurable subset of [0, 2?] of measure at most
s # (0, 1], then

|
?

&?
|Tn | p W�C1+ns |

[0, 2?]"E
|Tn | p W.

The same inequality with doubling weights holds provided that the
exceptional set E is not too complicated. We have

Theorem 7.2. Let W be a doubling weight, and let 0<p<� be
arbitrary. Then there is a constant C>0 depending only on p and on the
doubling constant L so that if Tn # Tn and E is a measurable subset of
[0, 2?] of measure at most s # (0, 1] that is a union of intervals of length at
least c�n, then

|
?

&?
|Tn | p W�\C

c +
1+ns

|
[0, 2?]"E

|Tn | p W.

8. NIKOLSKII INEQUALITY FOR 0<p<q<� WITH
A� WEIGHTS

Sometimes we would like to compare the Lp and Lq norms of tri-
gonometric polynomials. The following theorem offers such Nikolskii-type
inequalities with respect to A� weights.
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Theorem 8.1. Let W be an A� weight and let 0<p<q<� be
arbitrary. Then there is a constant C>0 depending only on p and q and on
the weight W so that

\|
?

&?
|Tn |W+

1�q

�Cn1�p&1�q \|
?

&?
|Tn | p W p�q+

1�p

for all Tn # Tn .
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